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The problem of finding a simple optimum control law 1is consigered. A control
law which consists in changing the conirol position a given finite number of
times is considered simple. The algorithm for selecting optimum control
positions and optimum instants of switching from one position to the other

is indicated. Examples are presented from the domaln of optimum motion of a
variable-mass body wlth constant thrust,

The realization of optimum laws for control functions 1ls always associated
with difficulties of technical nature, unless these laws are simple, for
example in the case of constant or plecewise constant functions of time,.

Below the problem of the best approximation to a complex control law by a
simple law is considered, namely, the replacement of a complex continuous
control function by & plecewise constant function with a given number of
levels (steps). The control here has a prescribed number of optimur posi-
tions in place of an infinite number and these are shifted at optimum
instants,

Such simple ovtimum control laws must be sought, for example, in problems
of optimizing the power-limlted motion of a variable-mass body tsee {11, for
example)., It 1s known that in the absence of a constraint on the reactive
thrust, the optimum law of 1ts change represents a continuous function of
time; the realization of such a law 1s difficult. On the other hand, if
the condition of constant absolute value of the thrust along the trajectory
(with optimum cut-off or without) 1s imposed in advance, then although such
a law is simple, it gives a great loss in the functional, i.e. in payload.
Such engine adjustment will be simple when the number of control positions
is finite and prescrived, 1l.e. guarantees the englrre a prescribed number of
thrust levels. The problem of optimum selection of these levels and >f the
optimum instants of changing the levels arises.

Examples of solving particular problems of stepwlse approximations of
controls are known in the literature [2 and 3].

In [2] an optimum stepwise change in the weight of the power source 1s
determined simply because of the speclal form of the functional of the prob-
lem and because of the upper bound on the derilvative of the welght of the
power source. A similar situation aiso holds 1n the case Investigated in

£31.

Let a dynamic system be described by the differential equations and
boundary conditions
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Here the x, are phase coordinates, u, the control functions (the posi-
tions of the controls) and xb(T) i1s the control functional of the problem.

The solution of the variational problem on the extremum of the functional
%, (T) yields the optimum controls u,*{(¢),...,u,*(t) . Let us consider
such a sltuation when the optimum law for one of the control functions,
ul*(s) s+ 88y, 1s too ccmplex for practical realization. Naturally, the
problem srises of finding such a law u;(t) 5., in place of y,*{¢}, which
would be simple to realize and at the same time would not “"worsen" the value
of the functional x,(7) by much.

Let us consider the control law to be simple if it consists of changing
the positlons of the controls a given finite number of times, i.e. the con-
trol function is plecewise-constant function. By using ¥ — 1 relay func~-
tions &(t) which take the values O or 1 , the plecewise-constant func-
tion, which takes on ¥ vslues, may be represented as follows [4 and 5]:

s =0..@dh+a)d+...+ay )0y +ay {2)

Here the aq,;,...,a, are parameters defining the height of the steps. The
¥ values of the control y,(t) are expessed thus

M =ap,..,W=0+...4ay ®)

Let us introduce the operating time of the parameters q;,...,0 -

The parameter g, 15 connected throughout the process {0 g ¢ < T), the
parameter a,., 1s connected when §,., = 1, the parameter a, 1s connected
when 6,8,...8,_, =1 , etc. The present times of operation of the parame-
ters iy, ... tyy 8re determined by differential expresslons of the form

tyi =080y -+ Oyy  (e=1,. . N —1), tyy=1 )
The total operating times are given by the integrals
T
Too=\ 8801 Oydt (=1, ,N—1), Tyy=T )
0
We subject the selectlon of the parameters o;,..., and the switching

points of the relay functlicas 3,,...,8,. to the condition of an extremum
of the functional xe(T) . For this purpose we use the method of L.S.Pont-

riagin: we form the Hamiltonian # and we write the differential equations
of the momenta

H= Y pfilepyot, (.. (@d +a) b+ ... +ay,) 8y, +ayl
i=0

)
pi‘:—-aH.{axi ,(i,j:(),i,...,n;k—-:?l,...,m)

The optimum controls wug,,...,u, are found by a standard method; to deter-
mine the optimum relay controls 8§,,...,8,_., the function g should be eva-
luated for the followlng sets of values o} these controls at each time ¢

H, Hy, ... Hy, Hy
By, =0 By =1 Byy =1 Sy, =1
Byg =0 -

63=1 6’ i
8 =0 8, =1
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The greatest {or least, depending on the nature of the extremum x,{(7})
value of x from the § evaluated quantities indicates the optimum set of
values of the relay controls av the time ¢ .

The followlng method may be used to find the optimum values of the para-
meters o, s...,q, (see [3 and 6], for example). Considering the parameters
a,,-..sa, Lo be phase coordinates, let us Join the differentlal equations

al' =0, .., GN. =0
to the system (1).
The Hamiltonlan function does not change here but ¥ differential equa-
tions of the form
LM oM oH
P T T guy O O e Pay N T T M
are jolned to Equations (6} for the momenta.

The initial and (inel values of the phase coordinates are not fixed, hence
the initial and final values of the momenta ~ are zero. Hence,
the conditions for the selection of the optimum values of the parameters
Qys-.ssa, Ffollow

T
0H ol
8., .0 dt =0, ..., e Al == 0 8
\ amn ! “N-1 S duy @
D) [
Using (4) and (5) the last formulas may be represenied uniformly in the
form T y1e T
© ol i
e di 2= ) s==4,...,N—1 SLiode =0 {9
N ou, M ( . ) J 0y
[l 0
Examples The criterion of optimum conditicns for constant-

thr?sb motion of a body of variable mass is the integral functional (see [1],
say

o

Jo=\ ¥t {7 is the modulus of reactive acceleration)

LI

If the motion consists of movement during the time I between two equi-
1librium points separated by a distance ? 1n a forceless fleld, then the
connection between the kinetic characteristics of the trajectory and the
acceleration a 1s given by two differential equations anf boundary condi-

tions
2" == o, U gﬁ; z{0) =0} = v (I =0,z(T)=1

where g = +1 1is the thrust-vector direction.

iet us refer the present length x to the interval ], the p.esent tlime
t to the time of motlon I, the veloclty v to 1/75 the acceleration g
to 1/7° and the runctional Jto 12/7. Then the variational p:oblem 1s

wriltten as )
B oo v = S =t (0) = e (0) = J ) = v (1) = 0, (D) = 1, min/ (1) (0

{here the notation for all the quantities is the same as before).

In the absence of a constraint on the control g(¢) , the optimum laws
of g(t) and 8{t) have the form (the curve « in Fig.1)

¢ = 12 (/, — 1}, 6 =1 He>1t2>0)
12 -, Bp=—1 A>t2>2Y,y),

J(y =12 (11)

i

a

Presented below are results of computations of certain stepwlse optimum
laws q(z) and the use of the proposed method 1is shown in the last of them.



Step-wise approximation of optimum controls 653

1) For g =aq, the optimum laws a(z), p(¢) are (Fig.l, curve 1)

= 4, =1 Y, > 6> 0),
‘ P Cs ) 7 () = 16 (12)

(I'—-‘-[h ﬁ=——1 (1>t>1/2)s
2) For a =aq,8, the optimum laws a(z), () are (Fig.1, curve 2)
a =45 p=1 Mz t>0),
a==0 (> t>1), J ) = 135 (13)
a=45 f=-—1 (A>t>?,

3) For a = o;B,+a, the optimum laws a(¢), g{¢)} are (Fig.1, curve 3)

=48, p=1 (He>t2>0)

1.6, Bp=1 (>t J () = 12.8 (14)
16,  Bor—1 (>t

48, P —1 A>1>3,)

f

QN e a
|

i

4) For a =(a,8,+ a,)b: the optimum laws a(¢), g(¢t) are (Fig.1l, curvel)

a =9, p=1 Ms>12>0)
a=25 p=1 Cls>t>1y)
a=0 Cli> 1>y J (1) = 12,5 (15)
a=25B=—1 (@ >t>9)
a =35, p=—1 A>1214)

Levels with given (null) amplitude are included in the composition of the
controls in the examples 2 and 4; wonly their optimum position is indicated
for sections with a given magnitude control.

N 1A
004" % ’
--Z -
0 —SHAL L7 \ §=8-1 /
/|

A . N
AL N
593525743 LA
Fig, 1 Flg. 2

For the three-step control function
a = (;6; + a3) &, (16)
with a zero level o, (see example (4)), the differential equations of the
phase coordinates, the Hamiltonlan function, the differential equations of
the momenta and the equations for the selection of the optimum parameters
a, »ap are according to (10), (6) and

z =, U=p (0,0, - ay) 8, T = 0,20:0, + 224,0,8,8, -+ a,?8,, Py 77— Dy

H = — a;?6,8¢ — 20,a,6,8, — 9,20, + p.P (@,8, + @) 6, |- Pyt P =0 (17)
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(17)
1 1 1 1 1 1 1 cont.
o Sa,a, dt + ay S Bidydt = g P,B8.8; dt, a; S 8,8, dt + ay S 8 dt = % S 2,B8,dt
0 0 0 0 0 0
The solution for the differentlal equation for the momentum p, may be
represented as
Pr=1=c(ts— 1 (18)

The optimum controls g(¢), 8,(¢t) and &,(¢) ,which creates a maximum for
the function §F are subject to the restrictions

p = sign p, (2) ®p, = 1p,) (19)
d=1 for 8;>0, & =0 forA; <0 (A =o0y(—a;—205+p,)) (20
8, =1 for A;>0, 8,=0. for A, <O Ay =ay(Ip,| —ag) + 8,4, (21)

The parameter g, may only be positive since g > O (see (16)). The para-
meter q, may be positive or negative, in the latter case [a,| < aj, since
a> 0 . Let us first consider the case q, > O .

Let — @ — @ 4+ |p,| —a; >0, then 4,> 0 for a,> O (see (20)) and 8, =1.
Hence, the expression |p,| = a, 1s known to be positive; therefore, 3,> O
(see z21)) and 8= 1 . Let Ipe] — @z < O, then it 1s known that a,< O,
and, therefore, 8§ = 0 . Hence, A, O and &,=0 .

These reasonings lead to the deduction: 1f & = 1, then it is known that
8,= 1 ; 1if &,= O , it is then known that §,= o , 1.e. the section ;=0
is located within the section 6,= O , and the section &, = 1 within the
section 8,= 1 . The disposition of the sections is shown in Flg.2 for

|p. (t)| the piecewise-linear function (18). Here g7, -, ¢t 4+ are roots
of Equatilons
Ay () = —og —2a3+ el (— ¢+ ) =0
Ay () = —ay — 205 + [ ¢] (th*t—ty) =0 (22)
Ag(t) = lel(—ta + te) — 03 =0, Ay () = lc|(tg* —ty) —ay; =0 (23)
Hence, in particular, there follows
g =2, -t = 21, (24)

The optimum controls g{(t), 8,(¢) and 8;(¢) may be written with the ald
of parameters ¢, ,tz" ,txsty 8nd ¢, * as follows:

=1, d=1, B=1 (> 130
8, =0, 8, =1, ﬁ*—“i (t2->?>tl-)
6, =0, 8, =0, (t*>1t2>t) (23)
8, =0, =1, p=—1 tr>t>t"
61’_:1v 6, =1, p=—1 (1>t>t1+)

After integration of the system of equations of motion with the bouvundary
conditions z (0) = v (0) == v (1) = 0, # (1) = 1 we find the following constraints:

2, =1, ity (1 — 7)) +ogty (1 —t7) = 1 (26)
The parameters a,, a, are expressed in terms of lelst: st2"» thus
a; = Ylelty, ag = Yele| (1 — t7 — ) 27)

We determine &~ = s, ta” = /g from Equations (22) and (23), we find
el = 25 from the second equation of (26) and, finally we find q,= 2.5 and

az= 2.5.
The form of the optimum controls 1s presented above 1n (15).
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If the parameter ¢, is considered negative, then as compared with the
case considered, the optimum law 8,{t) changes (8,= 0 for 1/, >t >0 and
for 1>t2%, 8=1 for *s>t>1, and for 4/, >t >%5; 8, 1is not
defined ror 3/ > t>?/) as do the paramsters a, ay(a, = —2.5, ay = 5).
is interesting to note that the optimum laws g(¢), B(¢) , as weﬁl as the
magnitude of the functional J remaln unchanged here.

In conclusion, let us make a few general remarks.

It

1. The ambigulty of the representation of the step control function in
terms of the parameters gq,,...,a, and the relay controls §,,...,8,_, may
be detected by using the following discussion {let us do this for ¥ = 2}.

Let us assume that an optimum two-step contrel has been constructed
uy = ody + g (28)

i.e. the relay function §, and the parameters g, and a, have been chosen.
Let us replace the function 8, by &, =1 - 8§ and let us find the para-
meters q,’ and g, , composing the control ;'

ul’ — allbll + sz (29)

such that &' () =uy (). For 8 ,=0 we have u,=gq,,8, =1, and u/= 8/ +a/;
for 8§, =1 we have uy;= o;+ az,8,’= 0, and u/= aj . &herefore,~for the iden-
tity u, (f) = u, (¢) compllance with the conditions

ag ==y o ay',T a0 = &y or oy ==y, ay =y oy,  (30)

is necessary.

Hence, the second representation of the control function has been obtained
which does not agree with the first but which ylelds the same law y, (t) and,
therefore, the same magnitude of the checking functlonal.

2. It was indicated in the initial formuiation of the problem considered
that all the parameters aga;,...,a, have been selected from optimum consider-
ations, Ir the control function 1s constrained by the limits 1| » u; >0,
then the constralnts

max [(. .. (20; -+ ) &y + . Fay ) Oy T ayl <<t
min [(. .. (200; 4 %) 8 + . oL A ay ) Oy ay] >0

are imposed on the parameters q; ..., -

In particular, the boundary may be Included In the composition of the.
optimum step control, as has been done in the examples 2 and 4. Let us pre-
sent an example of writing a three-step contrel ux(t) which includes the
lower O and the upper 1 boundarles

up = (1 — ) 8, - ) &,

Here we must have 1> a; > 0. It is assumed that in the optimum case the
eontrol y, also takes on intermediate values.

3. Apparently the step control function approximates the continucus con-
trol functilon "better” (in the sense of the checking functional) as the num-
ber ¥ 1increases. .f xo*(T) denotes the optimum value of the functional
for a continuous control ¥ and x W {7T) denotes the optimum value of the
functional for the step control “iN)' then

(2™ (T) — ag* (1| =0 for N ~>00

4, A numerical approach %o the solution of the problem of the stepwise
approximation of controls without using the representation (2) with relay
functions can be mentloned. Let us take the desired ¥ control levels
w (1) (M., “YV» and solve the problem by using the maximum principle.
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The times to change levels are determined from the condition of the extre-
mum of the Hamiltonlan functlon and the optimum amplitudes of the levels from
the condition of the extremum of the functional of the problem. This latter
procedure requires implicatlm of a numerical method of steepest descent type.
The method with relay funétions ylelds analytical expressions for the selec-
tion of the optlmum amplitudes of the levels.

5. If the original variational problem (1) with the stepwise cohtrol is
not subject to analytic solution, then the question &rises of the selection
of the numerical method for solving the boundary value problem. In addition
to satisfying the boundary conditions on the phase coordinates, the method
described above requires satisfaction of the conditions for selecting the
optimum parameters which are representable either as the integrals (8) or as
the differential equations (7) with zero boundary conditions for the momenta.
One of the possible methods of solving this boundary value problem 1ls the
reduction to a Cauchy problem and the selection of deflcient initial condi-
tions constralned by some method of solving algebraic equations, e.g. the
Newton method.

Let us note that in this case the numerliceal approsch mentioned In the
remark 4 may be used wlith equal success.
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