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The problem of finding a simple optimum control law is considel*ed. A control 
law which consists in changing the conkrol position a given finite number of 
times is considered simple. The algorithm for selecting optimum control 
positions and optimum instants of switching from one position to the other 
is indicated. Examples are presented from the domain of optimum motion of a 
variable-mass body with constant thrust, 

The realization of optimum laws for control functions is always associated 
with difficulties of technical nature, unless these laws are simple, for 
example in the case of constant or piecewise constant functions of time. 

Below the problem of the best approxl~tion to a complex control law by a 
simple law is considered, namely, the replacement of a complex continuous 
control function by a piecewise constant function with a given number of 
levels (steps). The control here has a prescribed number of optimum posi- 
tions in place of an infinite number and these are shifted at optimum 
instants, 

Such simple optimum control laws must be sought, for example In problems 
of optimizing tha power-limited motion of a variable-mass body (see t-11, for 
examole). It is known that in the absence of a constraint on the reactive 
thru>t,‘the optimum law of its change represents a continuous function of 
time; the realization of such a law is difficult. On the other hand, if 
the condition of constant absolute value of the thrust along the trajectory 
(with optimum cut-off or without) Is imposed in advance, then although such 
a law is simple, It glves a great loss in the functionai, I.e. in payload. 
Such engine adjustment will be simple when the numher of control positions 
is finite and prescribed, I.e. guarantees the engine a prescribed number of 
thrust levels. The problem of opt~rn~ selection of these levels and 3f the 
optimum instants of changing the levels arises. 

Examples of solving particular problems of stepwise approximations of 
controls are known in the literature [ 2 and 33. 

In [2] an optimum stepwise change in the weight of the power source is 
determined simply because of the special form of the functional of the prob- 
lem and because of the upper bound on the derivative of the weight of the 
power source. A similar situation also holds in the case investigated in 

Let a dynamic system be describedby the differential equations and 
boundary conditions 
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x( z .f* txj* uk* Qt xi (0) = xp, XI (T) = xt(l) (i,i= 0, i,. . ., n 

I = 1, . . ., n; k = i, . * ., ??a) (i) 

Here the xi are phase coordinates, ut the control funCtlOn8 (the poai- 
tlons of the controls) and x,(T) Is the control functional of the problem. 

The solution of the variational problem on the extremum of the functional 
x.,(T) yields the optimum controls ui*(*)t..*au,*(t) . Let us consider 
such a situation when the optimum law for one of the control functions, 

is too ccmplex for practical realization. Naturally, the 
~~~~~~rn~a~~~~s of finding such a law u (t) In place of u *(ti,t;tl;$ue 
would be simple to realize and at the &me i&e would not 'tro&en 
of the functional x,(2') by much. 

Let us consider the control law to be simple If it consists of changing 
the positions of the controls a given finite number of times, i.e. the con- 
trol function Is plecewlse-constant function. By ualng N - 1 relay func- 
tions 6(t) which take the values 0 or 1 the piecewise-constant func- 
tion, which takes on N values, may be reprekented as follows 14 and 53: 

u, (t) = (. . . (c& f as) 6e + . . . $_ a& bN_l f aN (2) 

Here the aI,. . .,a,, are parameters defining the height of the steps. The 
N values of the control u, (t) ar’e expessed thus 

U1(N)=aN, . . . . uxQ)= aI+ . . . + aN (3) 

Let us introduce the operating time of the parameter3 a,,...,Q*. 

The parameter cr fs connected throughout the process (0 c t $ Tf, the 
parameter cU_, is connected &en b,,, - 1, the parameter cc is connected 
when bobs. ..b,,_, = 1 , etc. The present times of operation of the parame- 
ters tM1, . . ., tyN are determined by differential expresslon§ of the form 

'J,& = 6888+f. . . ‘& (8 = 1, . . *,N - i), $&N = i (4 

The total operating times are given by the integrals 

T (s = I, . . ., N - i), T,,=T (51 

LO 

We subject the selection of the parameters a,,..., 
"z 

and the switching 
points of the relay functicns b,,..., ,,_, b to the condl 1On of an extremum 
of the functional xc(F) . For this purpose we use the method of L.S.Pont- 
rlagln: we form the Hamiltonian fl and we write the differential equations 
of the momenta 

The optimum controls u_,,...,u, are found by a standard method; to deter- 
mine the qoptimum relay controls I,, . . .> b _, the function g should be eva- 
luated for the following sets of values o!' these controls at each time t 

J-f, Ha . . * HN-1 HN 
8 - - N-l 0 8‘v_1 = 1 aN-l = 1 6 -4 N-l.- 

& - -0 N-a . . . . . . 

6, = i 8* = 1 
8, = 0 61 = 1 
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The greatest (or least, depending on the nature of the extremum x,(I)) 
value of H from the N evaluated quantities Indicates the optimum set of 
values of the relay controls al; the time t . 

The following method may be used to find the optimum values of the pal'a- 
meters a, I . . ..a. (see [3 and 61, for example). Considering the parameters 
a, T...ta, to be phase coordinates, let us join the differential equations 

a,' =- 0 9 - . ., a&. * =: 0 

to the system (1). 

The Hamlltonlan function does not change here but N differential equa- 
tions of the form 

i) II aw 
I’;_ , 2-r. - Wd&- T-7 -- -q 8, . . 6,_,, . . ., pa, s E - -g (7) 

1 

are joined to Equations (6) for the momenta. 

The initial and fins.1 values of the phase coordinates are not fixed, hence 
the Initial and final values of the momenta are zero. Hence, 
the conditions for ihe selection of the optimum values of the PWameters 
aI9 . . ..aM follow r T 

Using (4) and (5) the last formulas may be represented uniformly 111 the 
form ~'ffa 

(s :--1 1, . . ., N - i), (9) 

II 
Examples The criterion of optimum conditions for constant- 

thrust motion of a body of variable mass 1s the Integral functional (see [l], 
say) '1‘ 

.f = \ Ii'& ((I is the modulus of reactive acceleration) 
(I 
0 

If the motion consists of movement during the tlme 1' between two equl- 
llbl~lum points separated by a distance 1 In a forceless field, then the 
connection between the kinetic characteristics of the trajectory and the 
acceleration a 1s given by two differential equations anf. boundary condl- 
tions 

T' :- y, L_* =: ag; r (0) = u (If) =- D (13 == 0, x (T) = f 

where F = +l is the thrust-vector direction. 

I-et us refer the present length x to the interval 1, the p:csent time 

t trj the time of motion T, the Velocity U 
to I/?" and the r'~nctionaI Jto 12/T3. 

to l/l', the acceleration a 
Then the variational p;soblen 1s 

written as 
J' = u. I>‘ = <Ifi, J- = ,$; r (0) ZY L‘ ((I) ZL J (0) = L' (1) == ., IL 2- (1) =. 1, fnitt J (I) (l(l) 

(here the notation for all the quantities 1s the same as before). 

In the absence of a constraint on the control a(t) the optimum lairs 

of a(c) and e(t) have the form (the curve - in Fli.1) 

Presented below are results of computations of certain stepwise optimum 
laws s(t) and the use of the proposed method is shown In the last of them. 
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1) For a = a, the optimum laws a(t), e(t) are (Fig.1, curve 1) 

a = 4, p=1 (‘L > t > O), 
J (1) = 16 (12) 

(I :.:. 4, p-_-i (1 > t > ‘/A 

2) For a = a, 6, the optimum laws a(t), e(t) are (Flg.1, curve 2) 

a =T 4.5, p-1 (V3 > t > O), 
a= 0 (“i’s > t ,, l/J, J (1) =- 13.5 (0) 
a .= 4.5, p = --i (1 > t > ?q, 

3) For a =a,81+ap the optimum laws s(t), e(t) are (Fig.1, curve 3) 

a = 4.8, p-1 (l/d > t > 0) 

a = 1.6, /.3=1 (I/* > t > 'la) J (1) =- 12.8 (14) 

a = I& ~:z_l (3/a > t >, 'A) 

a = 4.8, fi =:: __I (I> 1>,VJ 

4) For a =(alb,+ a2)b2 the optimum laws c(t), e(t) are (Fig.1, curved) 

n = 5, fJ=l (l,rg > 1> 0) 

a = 2.5, p-1 (116 >, t > l/5) 

a=0 (V6 > t > *lb) J (1) = 12.5 (15) 
a = 2.5, p = -1 (4/j > t > 3/J 
a = 5, p = -1 (1 > t ,> VJ 

Levels with given (null) amplitude are Included In the composition of the 
controls in the examples 2 and 4; only their optimum position Is Indicated 
for sections with a given magnitude control. 

Fig. 1 Fig. 2 

For the three-step control function 

s = (aA + a2) 6, (16) 

with a zero level a3 (see example (4)), the differential equations of the 
phase coordinates, the Hamiltonlan function, the differential equations of 
the momenta and the equations for the selection of the optimum parameters 
c,,ap are according to (lo), (6) and (8) 

x’ Z 1; u’ = B W, -t a21 6,, J’ --- a,*8,6, + 2z,a,b,6, + aa?&, pll -- px 

II = - a12S,d, - 2a!a,a,b162 - a,*b, t_ p&l (a,& + a& 6, -I- AU, pa.’ = 0 (17) 
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(17) 
1 1 1 1 1 1 cont. 

a1 816, dt + aa b16, dt = f ~$8~8, dt, al b,8, dt + a2 8, dt = + ~&sM~ dt 
s s s s. s . 

0 0 0 0 0 0 

The solution for the differential equation for the momentum pV may be 
represented as 

Pv = c (t* - t) (18) 

!Jbe oPtih controls B(t), 6,(t) and 6 (t) ,whlch creates amaxlmum for 
the function H are subject to the restrlct%ons 

B = sign p. (t) (BP, = I P” I) (1% 

6, = 1 for AI> 0, ST=0 .for,AI<O (A1=al(-a,-2a,+Ip,j)) (20) 

8, = 1 for Aa> 0, 6,=0. for AZ< 0 (AZ = a2 (Ip,I -ad f WI) W 

The parameter ap may only be positive since 0 > 0 (see 
meter a, may be positive or negative, In the latter case 
a'> 0 . Let us first consider the case Q, > 0 . 

Let -al--as i- l&,1 -%>O, then A,> 0 for a,> 0 (see (20)) and 6,=1. 
2 aa IS known to be positive; therefore, A,> 0 

‘p$!d!ce~p,~ y 2 &; ,at;e; It 1s known that A,< 0 , 
, 2 2 * 

These reasonings lead to the deduction: If 6 = 1, then It Is known that 
1; if b=O 

k=located wit&n tie 
It Is then known that 6,' b i.e. the section ba= 0 
section ‘6 = 0 and the se&on b = 1 within the 

section ba= 1 . The dlsposltioh of Che aectlons 1s show; In Fig.2 for 
kpfVg?itlk;; plecewlse-linear function (18). Here tI-,t,-,t;+,t,+ are roots 

AI (tl) = - a, - 2a, + I cl (- t,- + t*) = 0 

A 1 (tl+) = - aI - 2a, f 1 c 1 (t,+ - ts) == 0 (22) 

A p (tp-) = 1 c ( (- t2- + t*) - aa = 0, A a (t2+j = 1 c I (t,+ - t*) - a? = 0 (23) 

Hence, in particular, there follows 

t,+ + t; = 2t,, t,+ t- t,- = 2t, (24) 

The optimum controls e(t), 6,(t) and 6,(t) may be written with the aid 
of parameters t,-,ta-,t+,ta and t,+ as follows: 

6, = 1, &-- 1, fl=i (t1- > t > 0) 
8, = 0, 6,= 1, p=i (ts- > ‘i >, t1-) 

6, = 0, 8, = 0, (t,+ > t > tz-) (25) 

61 = 0, 6,= 1, p=-1 (tr+ > t > t,+) 

8, == 1, s, = 1, p=-1 (1 > t > h+) 

After integration of the system of equations of motion with the bol'ndary 
conditions I (0) = u (0) == u (1) = 0, ~(1) = 1 we find the following constraints: 

2t* = 1, alt; (1 - tI-) + a,t, (1 - tz) = 1 (26) 

The parameters a,, a, are expressed in terms of Icl,tl-,tz-, thus 

al = 1/rl c It,-, a2 -= '/,I cl (1 -- t,- -- tl-) ("7) 

We determine tl-= lf5,tS- = 'Is from Equations (22) and (23), we find 
ICI = 25 from the second equation of (26) and, finally we find a,= 2.5 and 

aa= 2.5. 

The form of the optimum controls is presented above in (15). 
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If the parameter al Is considered negative, then as compared with the 
case considered, the optimum law 
for 1 > t > ‘f,. 61 = 1 for 

b,(t) changes (b,= O for l/s>, t>,O and 
‘/~>,t>,Vs and for~/S),t>s16; I, is not 

defined Zor sf,> t>,a/J as do the parameters a,, aB(ar = -2.&a = 5). 
is interesting to note that the optimum laws c(t), g(t) , as we'll as the 

It 

magnitude of the functional J remain unchanged here. 

In conclusion, let us make a few general remarke. 

1. The ambiguity of the representation of the step control function in 
terms of the parameters ~,...,a,, and the r&lay controls 61) . ...&_, may 
be detected by using the following discussion (let us do this for N = 2). 

Let us assume that an optimum two-step control has been constructed 

u1 I=; u,d, + a2 

i.e. the relay function 6, and the parameters u! and cp have been chosen. 
Let us replace the function 61 by bi' = 
meters a!' and az' , 

1 - &I and let us find the para- 
composing the control u,' 

% ’ = a,‘8,’ + azf (29) 

such that U,'(t) c %(t). For 6,= 0 we have q= cl,b' = 1, and u,'= 6,'+ cl; 
for b,= 1 we have ul= a,+ c2, b,‘= 0, and ui= ai . !rh s‘refore, for the lden- 
tity u,'(c)E u,(t) compliance with the conditions 

ap = a,’ + as’,’ a, + a2 = ax’ or al *z-._ all a2 ’ = a, -+ a, (30) 

is necessary. 

Hence, the second representation of the control function has been obtained 
which does not agree with the first but which yields the same law u,(t) and, 
therefore, the same magnitude of the checking functional. 

2. It was indicated in the Initial formuiatlon of the problem considered 
that-all the parameters al,...,a, have been selected from optimum consider- 
ations. IL the control function is constrained by the limits I> ltl >O, _ - 
then the constraints 

max [(. . . (116, -1 ct?) 6, + . . . -k aA7-J 8,_, + aLvl 4 1 
min [(. . . (r,n, i- 32) 6, i- . . . + ax-J a,_, + 3%) > 0 

are imposeo on the pax*ameters alto.o,a,. 
In particular, the boundary may be included in the composition of the 

optimum step control, as has been done in the examples 2 and 4. Let us pre- 
sent an example of writing a three-step control u,(t) which includes the 
lower 0 and the upper 1 boundaries 

l&l = ((i - a,) 8, -t a,) 6, 

Here we must have i>ap>o. St is assumed that in the optimum case the 
control ui also takes on intermediate values. 

3. Apparently the step control function approximates the continuous con- 
trol function -bettern (in th e sense of the checkin? functional) as the num- 
ber N increases. If x,*(T) denotes the optimum value of the functional 
for a continuous control UT and X(N)(T) denotes the optimum value of the 
functional for the step control lciN), then 

j qp (T) - ?@* (F) j - 0 for s ---,cyl 

4. A numerical appsoach ;o the solution of the problem of the stepwise 
approximation of controls without using the representation (2) with relay 
functions can be mentioned; Let us take the desired N control levels 
(I1 (t) (UY’ ,..., 1 atN))and solve the problem by using the maximum principle. 
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The times to change levels are determined from the condftion of the extre- 
mrun of the Hamiltonlan function andthe optimum amplitudes of the levels from 
the condition of the extremum of the functional of the problem, This latter 
procedure requires implW&icn ofa numerical method of steepest descent type. 
The method with relay Eundtions yields analytical expressions for the selec- 
tion of the optimum anplltudes of the levels. 

5. If the orlainal variational Problem (1) witk the stenwise cohtrol is 
not-subject to analytic solution, thsn the &&stion arises bf the selection 
of the numerical method for solving the boundary value problem. In addition 
to satisfying the boundary conditions on the phase coordinates, the method 
described above requires satisfaction of the condZtions for select 
optimum parameters which are representable either as the integrals 9 the ( ) or as 
the differential equations (7) with sero boundary conditions for the momenta. 
One of the possible methods of solving this boundary value problsm is the 
reduction to a Cauchy problem and the selection of deficient initial condl- 
tions constrained by some method of solving algebraic equations, e.g. the 
Newton method. 

Let us note that in this case the numerical 
remark 4 may be used with equal sueW?ss. 
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